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BIOMETRICS 43, 487-498 
September 1987 

The Analysis of Multiple Endpoints in Clinical Trials 
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London NW3 2PN, United Kingdom. 

2 Biostatistics, Memorial Sloan-Kettering Cancer Center, 
New York, New York 10021, U.S.A. 

3 Department of Biostatistics, Harvard School of Public Health, 
Boston, Massachusetts 02115, U.S.A. 

SUMMARY 

Treatment comparisons in randomized clinical trials usually involve several endpoints such that 
conventional significance testing can seriously inflate the overall Type I error rate. One option is to 
select a single primary endpoint for formal statistical inference, but this is not always feasible. Another 
approach is to apply Bonferroni correction (i.e., multiply each P-value by the total number of 
endpoints). Its conservatism for correlated endpoints is examined for multivariate normal data. A 
third approach is to derive an appropriate global test statistic and this paper explores one such test 
applicable to any set of asymptotically normal test statistics. Quantitative, binary, and survival 
endpoints are all considered within this general framework. Two examples are presented and the 
relative merits of the proposed strategies are discussed. 

1. Introduction 

The excessive use of multiple significance tests in clinical trials can greatly increase the 
chance of false positive findings. This paper addresses the problem of how to apply 
significance testing in randomized trials with several outcome measures for treatment 
comparison. The problem is complicated by the fact that endpoints are usually correlated 
and trials often have a mixture of data types, e.g., quantitative, binary, and survival data. 

Perhaps the most common approach in the medical literature is to analyze each endpoint 
separately, presenting multiple P-values and an overall subjective conclusion. At best, this 
provides an open display of data enabling readers to draw their own (possibly different) 
conclusions. At worst, authors may emphasize significant findings, perhaps not even 
reporting some nonsignificant endpoints. Even if all endpoints are reported openly, authors 
and readers may still not appreciate the increased risk of an overall Type I error rate. It is 
commonplace to interpret a trial as positive if any endpoint has a treatment difference 
significant at the 5% level, and there is a need to deter authors from such indiscriminate 
use of P-values. 

One possible solution is to specify in the study protocol a single primary endpoint whose 
P-value for treatment difference represents a formal test of hypothesis. All other endpoints 
are then subsidiary, requiring exploratory rather than formal interpretation. This simplified 
situation can be hard to maintain. For example, in heart disease prevention trials both 
nonfatal myocardial infarctions and total deaths are of interest, so emphasis of one over 
the other is judgmental. Also, there is often pressure (e.g., from journal editors and referees) 
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488 Biometrics, September 1987 

to provide P-values for subsidiary endpoints. Thus, selection of a single primary endpoint 
is only a partial solution to the multiple-endpoints problem, and it may be wise to prespecify 
more stringent Type I error rates for secondary endpoints. 

This paper considers how to control P-values when all endpoints are analyzed on equal 
terms. For several normally distributed endpoints, one standard approach is Hotelling's T2 
(Press, 1972). However, as pointed out by O'Brien (1984) and Meier (1975), Hotelling's T2 
is intended to detect any departure from the null hypothesis and hence lacks power to 
detect any specific types of departure that are considered a priori to be biologically plausible. 
Thus, Hotelling's T2 is quite unsuitable for analysis of clinical trials and is not considered 
further. 

For k endpoints without prespecified priorities, how can significance testing be used 
while (i) preserving a small overall Type I error rate and (ii) allowing for correlated 
endpoints? Section 2 considers the conservatism of Bonferroni correction for P-values while 
Section 3 explores a global test statistic for any set of asymptotically normal test statistics, 
with particular reference to a method proposed by O'Brien (1984). Section 4 presents two 
examples and Section 5 discusses the relative merits of the alternative approaches. 

2. Bonferroni Correction 

The Bonferroni inequality can be used to obtain an adjustment to the smallest P-value for 
significance tests on k endpoints (Miller, 1981; Armitage and Parmar, 1986). If the k 
endpoints are independent then Pr(smallest P-value < a) = 1 - (1 - a)k a ak if a is small. 
Hence, Bonferroni correction has each P-value multiplied by k, the number of endpoints. 
That is, for an overall Type I error rate a, one accepts as statistically significant only those 
P-values less than a/k. In practice, endpoints are correlated, so that Bonferroni correction 
becomes conservative and Worsley (1982) has proposed one possible improvement. How- 
ever, does such overcorrection seriously affect the power of a trial to detect genuine 
treatment differences? 

It is difficult to obtain general results for nonnormal data or arbitrary correlations 
between endpoints. Therefore, we consider k normally distributed endpoints, each with 
known variance, for which all possible pairs have the same (known) correlation p within 
each of two treatment groups. Then, for any prespecified a, k, and p one can derive 
numerically that "nominal" value a' which the smallest of k one-sided P-values obtained 
from the normal test statistics will reach with probability a under the null hypothesis. 
Table 1 shows values of a' and its corresponding standardized normal deviate z' for 
k = 2, . .., 10 endpoints; for p = 0, .1, .3, .5, .7, .9; and for a = .05, .025. Values of z' 
were obtained using a quintic interpolation of tabular values for the probability distribution 
of the maximum of k equicorrelated standardized normal deviates published by Gupta 
(1963). Table 1 also shows the exact values of a' for p = 0, which are slightly 
smaller than a/k. 

For each number of endpoints k, a' increases as the correlation between endpoints 
increases, i.e., the conservatism of Bonferroni increases as p increases. However, the degree 
of conservatism is small for p < .5. For instance, with k = 5 endpoints, a = .05, and 
p = .5, a ' = .0128, compared with a/k = .01. Thus, Bonferroni correction works reasonably 
well for moderately correlated variables. Also, there is no noticeable deterioration in 
Bonferroni correction as the number of correlated endpoints increases. For two-sided 
testing, approximate results are obtained by doubling every one-sided probability (both for 
a and a') in Table 1. Thus, for two-sided a = .05 one can use one-sided a = .025. The 
results are very slightly conservative, since the probability of any two variables exceeding 
the critical ay' levels in opposite directions is ignored, but this is negligibly small. 

In reality, multiple endpoints are not usually equicorrelated and normally distributed. 
However, it seems plausible that similar findings would occur for any continuous 
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The Analysis of Multiple Endpoints 489 

Table 1 
Bonferroni correction and the true "nominal" significance levels a', with corresponding standardized 

normal deviates z' to preserve an overall one-sided Type I error a, for k = 2(1)10 normally 
distributed endpoints and equal pairwise correlations p = 0, .1 (.2).9 within each 

of two treatment groups 

p 

k Bonferroni 0 .1 .3 .5 .7 .9 
a = .05 

2 z' 1.960 1.955 1.951 1.938 1.916 1.877 1.798 
a' .0250 .0253 .0255 .0263 .0277 .0303 .0361 

3 z' 2.128 2.121 2.116 2.097 2.064 2.001 1.877 
a' .0167 .0170 .0172 .0180 .0195 .0227 .0303 

4 z' 2.241 2.234 2.228 2.204 2.160 2.083 1.929 
a' .0125 .0127 .0130 .0138 .0154 .0186 .0269 

5 z' 2.326 2.319 2.312 2.285 2.233 2.144 1.967 
a' .0100 .0102 .0104 .0112 .0128 .0160 .0246 

6 z' 2.394 2.386 2.379 2.349 2.290 2.193 1.998 
a' .0083 .0085 .0087 .0094 .0110 .0142 .0229 

7 z' 2.450 2.442 2.434 2.402 2.340 2.233 2.022 
a' .0071 .0073 .0075 .0082 .0096 .0128 .0216 

8 z' 2.498 2.490 2.489 2.447 2.381 2.267 2.043 
a' .0063 .0064 .0064 .0072 .0086 .0117 .0205 

9 z' 2.539 2.531 2.522 2.487 2.417 2.296 2.062 
a' .0056 .0057 .0058 .0065 .0079 .0108 .0196 

10 z' 2.576 2.568 2.559 2.521 2.448 2.322 2.077 
a' .0050 .0051 .0053 .0059 .0073 .0101 .0189 

a = .025 
2 z' 2.241 2.240 2.237 2.229 2.212 2.180 2.108 

a' .0125 .0126 .0127 .0129 .0135 .0146 .0175 
3 z' 2.394 2.391 2.388 2.375 2.350 2.298 2.185 

a' .0083 .0084 .0085 .0088 .0094 .0108 .0144 
4 z' 2.498 2.494 2.491 2.475 2.442 2.377 2.237 

a' .0063 .0063 .0064 .0067 .0073 .0087 .0127 
5 z' 2.576 2.572 2.568 2.550 2.511 2.436 2.274 

a' .0050 .0051 .0051 .0054 .0060 .0074 .0115 
6 z' 2.638 2.635 2.630 2.611 2.567 2.483 2.304 

a' .0042 .0042 .0043 .0045 .0051 .0065 .0106 
7 z' 2.690 2.687 2.682 2.661 2.613 2.521 2.328 

a' .0036 .0036 .0037 .0039 .0045 .0058 .0100 
8 z' 2.734 2.731 2.729 2.703 2.652 2.554 2.349 

a' .0031 .0032 .0032 .0034 .0040 .0053 .0094 
9 z' 2.773 2.769 2.764 2.740 2.686 2.583 2.367 

a' .0028 .0028 .0029 .0031 .0036 .0049 .0090 
10 z' 2.807 2.803 2.798 2.773 2.716 2.608 2.383 

a' .0025 .0025 .0026 .0028 .0033 .0047 .0086 

asymptotically normal test statistics, though for discrete data there will be an inevitable 
degree of conservatism. For unequally correlated variables, it is difficult to give any 
generalizable results. However, if most pairwise correlations are less than .5, serious 
conservatism should not occur. If any two variables are known to be highly correlated 
(p = .9, say) it would be sensible to preselect one of them or to redefine some 
combination of them. 
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The main drawback to Bonferroni correction is that it confines attention to the smallest 
P-value of k test statistics. Thus, five endpoints with P-values of .01, .7, .7, .7, .7 are 
considered more highly significant than five endpoints all at P = .02, whereas the latter 
appears to contain more convincing evidence of a treatment difference. 

Thus, Bonferroni correction has its greatest power for alternative hypotheses in which 
only one of k endpoints has a nonzero treatment difference and, furthermore, one does not 
know in advance which endpoint that will be-a situation unlikely to arise in practice. For 
alternative hypotheses in which several variables depart from zero treatment difference in 
the same direction, Bonferroni correction will seriously lack power. However, since it is 
simple to apply, only slightly conservative, and easily understood, Bonferroni correction is 
still useful where the situation does not warrant more complex procedures. 

3. A Global Test Statistic 

Consider a randomized clinical trial with two treatment groups and k correlated endpoints. 
Later in this section we study the general problem of k endpoints with asymptotically 
normal test statistics, including binary data and survival data, but we begin with the 
multivariate normal case. 

Often one has several quantitative endpoints that are biologically related and positively 
correlated. Prime interest is in alternative hypotheses with all (or some) endpoints showing 
treatment differences in the same direction. O'Brien (1984) considers this problem and 
here extensions of his parametric (generalized least squares) test statistic are provided for 
the two-sample problem. 

First assume the k endpoints have a multivariate normal distribution with known 
variances and known correlation matrix 2 = (Zij) in each of two treatment groups. 
Intuitively, an appropriate test statistic should be a linear combination of the univariate 
standardized normal deviates z1, . . ., Zk. Using generalized least squares, O'Brien defines 
the coefficients in this linear combination for an optimal test against the alternative 
hypothesis that the k standardized treatment differences are all of equal magnitude and in 
the same direction. Let J' = (1, 1, ..., 1). Then O'Brien's test statistic may be written as 

(J 'Z -1j)/2 (1) 

which has a standardized normal distribution under the null hypothesis. The weighting 
factors J'Z:-1 are in fact the column sums of Z:-' for each variable, so endpoints that are 
less highly correlated with the other variables have correspondingly greater weights. Note 
that Z, the correlation matrix for the raw data in each treatment group, is also the correlation 
matrix for the standardized normal deviates z1, ... ., Zk. Also, J ' -1J is the sum of all cells 
of Z-1. 

To understand further this test statistic, consider the following two hypothetical examples. 

Example 1 All endpoints equally correlated, i.e., Zij = p for all i $j. 
Then 2 has diagonal elements d = 1 - p2(k - 1)/[(k - 1)p2 _ 1 - (k - 2)p] and off- 

diagonal elements equal to (1 - d)/[p(k - 1)]. All endpoints are weighted equally and 
formula (1) becomes 

I[I + (k - I)p]/kl I/2 N(0, 1) 

where ? is the mean of zi, z2, ..., Zk. Two-sided 5% significance is achieved if 
> 1.96 t[1 + (k - 1 )p]/k 1/2 which decreases with k and increases with p. For k = 5 

endpoints and p = 0,?z> .88 has P < .05. For k = 5 and p = .5,?z> 1.52 has P < .05. 
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The Analysis of Multiple Endpoints 491 

Thus, the combined evidence of several endpoints in the same direction obviously need 
not be as extreme as for a single endpoint. 

Example 2 Some endpoints independent, others equicorrelated, i.e., for all i $ j, Xij = 0 if 
i < m or j < m, and Xj1 = p otherwise. 

Formula (1) then becomes 

Xijm Zi + (Ii>M zi)/[(k - m - l)p + 1] N(O 1) 
Im + (k - m)/[(k - m - l)p + 1]1-/2 

- 

The m independent endpoints have larger weights than the (k - m) equicorrelated 
endpoints. However, the sum of these (k - m) correlated z-values will have greater weight 
than any single uncorrelated z-value. 

3.1 Adaptation to Any Asymptotically Normal Test Statistics 

Extension of the above global test statistic to any set of asymptotically normal test statistics 
whose correlation matrix can be estimated is now illustrated for several types of data. 

(i) Normal endpoints with unknown variance-covariance matrix which is the same for both 
treatment groups O'Brien (1984) proposed replacing 2 by the usual pooled within- 
treatment estimate S. z is then replaced by the k two-sample t-statistics t and formula (1) 
becomes 

(J's-lj)1t2 (2) 

This has an asymptotic standardized normal distribution, but does not follow a t distribu- 
tion. We have undertaken some simulation studies to supplement those already reported 
by O'Brien (1984). Briefly, for k = 2 endpoints a t distribution on N -4 degrees of freedom 
appears a good approximation even for N quite small (e.g., N = 10). However, for k = 5 
endpoints, convergence to a standardized normal distribution is slower. For instance, the 
5% point of formula (2) falls below 2.0 only for N around 200 patients and is around 2.2 
for N = 40 patients. 

(ii) Normal endpoints with unequal variance-covariance matrices in the two treatment 
groups, containing n1 and n2 patients, respectively Suppose 21 $ 22 are the (known) 
correlation matrices for the raw data in each of the two treatment groups and let il, ol, 
and x2, ?2 be the sample mean vectors and (known) standard deviation vectors for the 
k endpoints in the two treatments. 

If we define zi = (xil - xi2)/[ ,l/n1 + , 2/n2]112 for i = 1, ..., k and Xij = (n1Ii, + 
n22ij2)/(n1 + n2) for all i $j, then formula (1) is applicable as before. Usually, one needs to 
estimate a,, U2, 1, and X2 in the usual way, in which case formula (1) is asympotically 
normal. 

(iii) Crossover trials with normal endpoints For the two-period crossover trial there- are 
established methods of analyzing a single endpoint (Armitage and Hills, 1982). Suppose 
such a trial has k quantitative endpoints and for simplicity assume there are no period or 
carryover effects. Then each patient's data may be summarized by the k treatment 
differences d, . . . , dk. Suppose these are normally distributed with an estimated correlation 
matrix S obtained from the N patients' data. 

For the k endpoints one can obtain values of paired t-test statistics, ti, ..., tk, each with 
N - 1 degrees of freedom. Then a global test statistic is 

J 'S- 
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Again this has an asymptotic standardized normal distribution, but does not follow a 
t distribution. Simulation studies show that for k = 2 endpoints a t distribution on N - 2 
degrees of freedom appears a good approximation even for N as small as 10 patients. 
However, for k = 5 endpoints convergence to normality is slower. For instance, the 5% 
point of formula (3) reaches 2.0 for N around 100 patients and is 2.17 for N = 50 patients. 

(iv) Nonnormal quantitative data In practice, quantitative endpoints are not usually 
normally distributed. For a single endpoint the robustness of t or z statistics must be 
assessed, taking into account the degree of skewness and the sample size. With multiple 
endpoints the same principles should hold for a global test statistic. 

(v) Binary data For trials with two or more binary endpoints, one can use the normal 
approximation to the binomial. Let Pi,, Pi2 be the proportions responding to each treatment 
for the ith binary response variable, let ni, n2 be the number of patients in each treatment 
group, and let N = n, + n2. Define Pi = (pi, ni + pi2n2)/N. Then 

il- Pi2 

[(Pi(1 - Pi)N/nin2] 1/2 

is asymptotically N(0, 1) under the null hypothesis. The correlation between zi and zj, Zij, 
is estimated by maximum likelihood as 

sij -PA (5) 
[p1pj(1 - p,)(1 _ pj)] 1/2 

for any i $ j, where sij is the proportion of all patients with responses for both variables i 
and j. Then, substituting (5) for Xij in 2 and using formula (1) provides an asymptotically 
normal global test statistic. Further research is needed to assess this approximation for 
small samples, though it seems reasonable to suppose that if the sample sizes are adequate 
for each univariate normal approximation zi, then the global test should also be an adequate 
approximation. Also, the use of a continuity correction for each zi may be inappropriate, 
since the corrected global test would then be conservative, a common problem for attempts 
at continuity correction for combinations of discrete asymptotically normal test statistics. 
Estimates of Zij can also be obtained for mixtures of binary and normal endpoints. 

(vi) Survival data using log-rank tests Suppose endpoint j is a censored variable-say, 
patient survival times. Then the normal approximation to the log-rank test is given by 

Z= vj -E2ji (6) 

where bm1 = 1 if the mth subject on treatment 1 is dead, bm, = 0 otherwise, and Ej and V 
are the usual expectation and variance estimates for the log-rank test. 

Let us consider the bivariate problem of combining log-rank and binary endpoints, e.g., 
survival time and tumour response within a preset time for a two-armed cancer chemo- 
therapy trial. Then zj is defined in equation (6), zi is defined in equation (4), and, based on 
arguments given in the Appendix, Mij can be estimated by 

Rd - p(t) (7) 
N[NJ p(1 - pi)/n I n2]112 ( 

where Rd is the total number of patients who both responded and died, p(u) is the propor- 
tion of patients who responded among those at risk at time u, and the summation is over 
all death times tj. To obtain an anticipated positive correlation, one can consider the propor- 
tion of patients failing to respond. 
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The Analysis of Multiple Endpoints 493 

For this survival problem, the asymptotic normality of formula (1) can be utilized. 
Further adaptations are envisaged for other combinations of asymptotically normal test 
statistics, e.g., two log-rank statistics, normal and log-rank, two-sample Wilcoxon tests, and 
other linear rank statistics. For two log-rank statistics the correlation estimate of Wei and 
Lachin (1984) may be used. 

In principle, there is no difficulty in estimating correlations, leading to an asymptotically 
valid use of formula (1). This general strategy for using a global test statistic is now 
illustrated by two examples. 

4. Examples 

Example 1: A Crossover Trial of Chronic Respiratory Disease 
Seventeen patients with asthma or chronic obstructive airways disease entered a random- 
ized, double-blind crossover trial of an inhaled active drug versus placebo. Each patient 
received active drug and placebo for consecutive 4-week periods in a random order. The 
main purpose was to study the drug's possibly harmful effect on lung mucociliary clearance, 
and analysis of those results produced no evidence of harm. In addition, standard respiratory 
function measures were taken at the end of both treatment periods. These were peak 
expiratory flow rate (PEFR), forced expiratory volume (FEV1), and forced vital capacity 
(FVC), the latter two being expressed as a percentage of the predicted value for that patient's 
age, sex, and height in the normal population. In this trial the drug or placebo was given 
in addition to each patient's normal treatment for respiratory disease. A secondary question 
was whether the addition of this extra inhaled drug could further improve respiratory 
function. 

For each measure there were no signs of period or carryover effects, so that the univariate 
analysis of drug versus placebo was performed using paired t-tests as follows: 

% predicted % predicted 
FEV1 FVC PEFR 

Mean difference (Drug - Placebo) +7.56% +4.81% +2.29 1/min 
Standard deviation of difference 18.53% 10.84% 8.51 1/min 
t-value +1.63 +1.77 +1.11 

All three measures showed a mean improvement on active drug but none achieved statistical 
significance at the 5% level. Thus, Bonferroni correction would lead to a conclusion of no 
improvement on active drug. Instead we now use formula (3) to assess the collective 
evidence of drug benefit, taking into account associations between the three measures. 

The correlation matrix S for the three measures' paired differences and its inverse S-1 
are as follows: 

FEV, FVC PEFR FEV, FVC PEFR 

FEV, 1 .095 .219 1.051 .028 -.245 
S =FVC .095 1 .518 1; .028 1.368 -.7151. 

PEFR .219 .518 1 -.245 -.715 1.424 

J'S-1, the column sums of S-1, are .834, .68 1, and .464 for FEV1, FVC, and PEFR, 
respectively. Thus, FEV1 has the greatest weight in the global test statistic, since it is less 
highly correlated with the other two measures. From formula (3) the global test statistic t 
equals 2.19. Based on the asymptotic normality of formula (3) and our preliminary 
simulation studies, one is able to assert that the overall evidence that the extra inhaled drug 
improved respiratory function is around the 5% level of statistical significance. 
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Example 2: A Trial of Two Treatments for Metastatic Colorectal Cancer 
A group sequential trial of two systemic chemotherapy regimens for metastatic colorectal 
carcinoma, MOF-Strep versus MTX-FU, was designed to enroll (at most) five groups of 17 
patients per arm (Geller et al., 1984). The major endpoint was tumour response after 2 
months' treatment. However, patient survival time was also considered important. Data 
for the first group of 17 patients per arm are analyzed here. There were six tumour responses 
on MOF-Strep and one on MTX-FU, yielding an uncorrected x2 = 4.50 for P = .034. For 
survival, the log-rank test yielded X2 = 2.11 for P = .15, indicating a slight superiority of 
MOF-Strep. The variance of the log-rank test was 4.44 and there were 18 deaths all together, 
7 on MOF-Strep and 11 on MTX-FU. One patient on MOF-Strep responded to treatment 
and also died. From formula (7), the correlation between the (square roots of the) univariate 
test statistics was estimated to be .486, i.e., a positive correlation between failure to respond 
and death. The global test statistic z was calculated using formula (1) to be 2.07, so that 
P = .038. 

Suppose this group sequential trial has overall Type I error rate equal to .05 and fixed 
nominal significance levels, as in Pocock (1977), for the above global test statistic. Then, 
to stop the trial requires a z test statistic of at least 2.41 and this was not achieved. Thus, 
even with the two endpoints combined, the results were not extreme enough to stop the 
trial at the first analysis. 

5. Discussion 

Inevitably, there is no unique, optimal strategy for the use of significance testing when 
analyzing multiple endpoints in clinical trials. This paper has explored two quite different 
options, the use of Bonferroni correction and various extensions of a global test statistic 
proposed by O'Brien (1984). The main advantage of Bonferroni correction is its simplicity, 
and its slight conservatism is unlikely to be a serious problem. Thus, Bonferroni correction 
remains useful for avoiding overinterpretation of a set of univariate P-values for multiple 
endpoints. However, since Bonferroni correction utilizes only the most extreme of k 
P-values, it fails to make efficient use of the collective data, particularly in circumstances 
where one expects several endpoints to behave similarly. One possible alternative is to 
modify the Bonferroni procedure to take account of more than one P-value, as considered 
by Simes (1986). 

The main value of the global test statistic (1) is its applicability to any set of asymptotically 
normal test statistics, as explored in Section 3. Multivariate methods have often been 
confined to quantitative data, whereas clinical trials frequently generate binary and censored 
data. Estimating the correlation matrix X: for asymptotically normal test statistics obtained 
from such nonnormal data was illustrated by formulae (5) and (7). Another issue is the 
robustness of the asymptotically normal statistic for finite sample sizes, and this depends 
primarily on the validity of each univariate normal approximation. O'Brien (1984) has 
previously reported encouraging findings for quantitative data but we intend to undertake 
further simulation studies, e.g., for binary and survival data, to explore this issue. 

Formula (1) assumes all endpoints are equally important, i.e., the approach is optimal 
for alternative hypotheses of equal (standardized) magnitude for all endpoints. However, 
one simple method of attaching unequal priorities (weights) to the various endpoints is as 
follows. Consider an alternative hypothesis in which k endpoints have standardized treat- 
ment differences g/wi, ... , g/wk. Then the optimal test replaces formula (1) by 

J'(WXW)- Wz 

[J i(Wy:W)-Ij] 11/2 

where W is a diagonal weighting matrix with elements w1, ... ., Wk. Both the relative clinical 
importance of the endpoints and their relative statistical power to detect realistic treatment 
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differences could also play a role in determining such weights. However, one should specify 
any unequal weights beforehand in order to avoid subjectivity. 

Even with endpoints of equal priority, the generalized least squares principle produces a 
test statistic that is a weighted mean of k standardized normal deviates. Thus, endpoints 
that are more highly correlated with one another make smaller individual contributions. 
O'Brien (1984) also considered an alternative procedure based on ordinary least squares 
that uses the unweighted mean of k standardized normal deviates. That is, formula (1) is 
replaced by kf/(J '-XJ)112, which is also a standardized normal deviate under the global 
null hypothesis. With only two endpoints, the two procedures are identical. For k > 2 
endpoints, equal correlations among the endpoints are unlikely and therefore the weighted 
statistic should be more powerful. 

However, for certain correlation matrices it is possible for the weighted statistic (1) to 
have negative weights, which seems untenable from a practical viewpoint. In our experience 
this appears likely to arise when one is attempting to combine data from diverse endpoints 
which have an irregular correlation structure. For instance, the crossover trial described in 
Example 1 had an additional and less widely-used variable, the penetration index (PI), 
which measures the ability of a deep inhalation to reach small airways. Expanding the 
analysis to four variables led to the following estimated correlation matrix S derived from 
patient paired differences: 

1 .095 .219 -.162 FEV, 
1 .518 -.059 FVC 

1 .513 PEFR 
1 PI 

This resulted in weights J'S1 of 1.38, 1.51, -1.03, and 1.84 for FEV1, FVC, PEFR, and 
PI, respectively. The problem arises because PI is correlated with PEFR only, whereas 
PEFR is also correlated with FVC and FEV1. The original analysis without PI provided a 
more logical set of positive weights. Alternatively, one could have resorted to an unweighted 
test statistic for all four variables. 

O'Brien (1984) also considers an alternative nonparametric approach to combining 
several quantitative endpoints, which will be useful for small data sets where one is unable 
to rely on asymptotic normality. 

One fundamental issue is deciding when a global test statistic is appropriate. Most clinical 
trials have multiple endpoints, but they are often disparate features of patient response 
unsuitable for combining. For instance, in primary prevention trials of coronary heart 
disease it would be inappropriate to combine myocardial infarctions and noncardiovascular 
deaths into a single global test, since they are totally different outcomes. Global test statistics 
are more realistic when several endpoints measure closely related aspects of patient response, 
as in Example 1. Other examples might be in psychiatric illness or rheumatoid arthritis 
with several measures of symptomatic improvement. Use of a global test statistic may be 
contentious in some situations. For instance, Example 2 combines tumour response (a 
short-term measure of drug activity) and patient survival (a more "patient-oriented" 
assessment of overall benefit). However, since a tumour response usually enhances survival, 
such a combination may have some merit. 

The analysis strategy for multiple endpoints should affect the design. First, awareness of 
the difficulties in interpreting multiple endpoints should help to avoid an unnecessary 
excess of endpoints. A clear statement in the trial protocol of the priorities among endpoints, 
including the possible selection of a single primary endpoint, is desirable. Indeed, the main 
value of a global test statistic may be in analyzing secondary endpoints, leaving the primary 
endpoint for univariate analysis. It may sometimes be useful to redefine certain sets of 
endpoints that assess specific aspects of patient response, each set requiring a separate 
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collective analysis. Also, the method of analysis, Bonferroni correction or a global test 
statistic, should be specified in the study protocol to avoid any post hoc selection. 

In the presentation of results, a global test statistic could either replace or complement 
the univariate analysis of each endpoint. In order to preserve effective communication with 
nonstatisticians, the latter approach may be preferable. However, a nonsignificant global 
test would clearly inhibit any claims of treatment difference for individual endpoints. 

This paper has concentrated on significance testing for multiple endpoints, but estimation 
methods should also be considered. By a procedure analogous to Bonferroni correction, 
one could widen each univariate confidence interval but this may be unnecessary since 
uncorrected confidence intervals are usually sufficiently wide to deter exaggerated claims 
of treatment difference. 

Methods for defining multivariate confidence intervals, as in Miller (1981), are difficult 
to present visually except for the bivariate case. One possibility is to obtain a single 
confidence interval of treatment difference from the generalized least squares estimation in 
formula (1). This assumes that the true standardized difference is the same for all endpoints, 
so this approach may be too abstract for general use. 

Other problems worth exploring include the use of multiple endpoints in interim analyses, 
the extension to more than two treatments as discussed by O'Brien (1984), adjustment for 
prognostic factors, and methods of assessing the required size of trials with multiple 
endpoints. Thus, further research is needed to better integrate the concept of a global test 
statistic into the clinical trial statistician's repertoire, with emphasis placed on the feasibility 
of implementing such methods in actual trials. 
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RESUME 

Les comparaisons de traitements dans les essais cliniques randomises mettent, en general, en jeu 
plusieurs criteres finaux, de telle sorte que les tests de signification conventionnels peuvent augmenter 
serieusement 1'erreur totale de Type I. Une option possible est de selectionner un seul critere primaire 
pour faire une inference statistique correcte, mais ce n'est pas toujours possible. Une autre approche 
est de faire la correction de Bonferroni (c'est-a-dire multiplier chaque P-valeur par le nombre total de 
criteres). Son conservatisme pour des criteres correles est etudie pour des donnees suivant une loi 
normale multidimensionnelle. Une troisieme approche consiste a trouver un test statistique global 
approprie, et cet article etudie un tel test, applicable a tout ensemble de statistiques de tests 
asymptotiquement distributes suivant une loi normale. Avec cette demarche generate, on peut aussi 
bien considerer des criteres quantitatifs, binaires ou de survie. L'article presente aussi deux exemples, 
et discute les merites respectifs des differentes strategies proposees. 
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APPENDIX 

In problems of response and survival, the data can be represented as N independent vectors (Ri, Xi, 
Ai, Z4), i = 1, . . ., N, where R denotes the response indicator (1 = response, 0 = nonresponse), X 
denotes the time to failure or censoring, A denotes the failure indicator (1 = failure, 0 = censored), 
and Z denotes the treatment indicator (1 = treatment A, 0 = treatment B). In what follows all the 
arguments will be made under the null hypothesis of no treatment effect on response or survival. We 
shall also condition on the Z's; however, we will assume that as N grows the proportion of treatment 
A will converge to a constant /i. 

The proportions test, given by (4), can also be written as a normalized sum of independent mean 
zero random variables. If we denote by T. 

N 

T. , (Ri - 7)(Zi -Z), (A. 1) 
1= 2 

where 7r denotes the true probability of response and Z = E z1/N, then (4) is equal to T, /V /2, where 
VI = nn2j3(1 -p)/N. 

It will be convenient to express the log-rank test as a stochastic integral of a counting process. That 
is, the log-rank test given by (6) is also equal to T72/ VV2, where 

N 

T2 = J dNi(u)IZi - Z(u)j, (A.2) 
i=1 

where, with I(A) denoting the indicator function of the event A, 

Nj(u) = I(Xi < u, Ai = 1), 

N N 

A U) =E Zj I(Xj >: U)/ E I (Xj >': U). 
j= I j= I 

Using what now has become standard in the theory of counting processes (see Andersen and Gill, 
1982; Gill, 1980), we can express the statistic T2 as 

N 

E f dMi(u)Z4 - Z(u)j, (A.3) 

where dMi(u) = dNi(u) - dA(u)I(Xi u u), and A(u) denotes the cumulative hazard function of the 
underlying survival time. If we define the limit of Z(u) as ,t(u), then (A.3) can be written as a sum of 
two terms, namely 

N 

E f dMi(u)1Z4 - l(u)) (A.4) i=f 
N 

-E JdMj(u)jZ(u) - t(u)j- (A.5) 
i=1 
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Using arguments similar to Tsiatis (1982, ?3), we can show that N- 12 times the expression in (A.5) 
converges in probability to zero. Hence, (A.3) can be approximated by (A.4), a sum of independent 
mean zero random variables. Therefore, the random vector (T., T2) is asymptotically equivalent to a 
sum of mean zero random vectors 

N_ 
E [(RI - )(ZiZ), f dMi(u)1Zi - A(u)1l. 

i=1 

Standard results for sums of independent random vectors can be used to show that the joint 
distribution of (T., T2), properly normalized, will converge to a bivariate normal distribution with 
mean 0, variance 1, and correlation equal to cov(T,, T2)/( V, V2)'1/2 where 

N 

cov(T,, T2)= , E[(Ri - 7r)(Zi - Z) J dMi(u)1Zi - ,(u)1l. 
i=1 

In general, cov(T,, T2) may be estimated by substituting j for 7r, Z(u) for p1(u), and the Nelson 
estimate of the cumulative hazard function for A. A simplification of the estimate can be obtained in 
the special case that the underlying censoring distribution is independent of treatment, as is the case 
in most randomized clinical trials. In such instances, under the null hypothesis of no treatment effect 
on response or survival, the random vector (R, X, A) is independent of Z. Therefore, (Ri, Xi, Ai), 
i = 1, .. ., N, are identically and independently distributed. It is also clear that ,u(u), the propor- 
tion expected on treatment A among individuals at risk at time u will be independent of time, i.e., 
,u(u) = ,t for all u. Therefore, cov(T,, T2) is equal to 

E (Zi - Z)(Zi - 8t)EI(Ri - w) f dMi(u)j. 

However, E(Ri - 7r) j dMi(u)} is the same for each i and therefore can be estimated by 

Z [(Ri - p) f 1dNi(u) - dN(u)I(Xi > u)/Y(u)}]/N. (A.6) 

We note that _ p f ldNi(u) - dN(u)I(Xi - u)/Y(u)} = 0, and therefore (A.7) is equal to 

R f dNi (u) - (U) Z JI(X, ? u, Ri = I)I/Y(u)]. 

Since f dNi(u) = Ai, then the sum _ Ri f dNi(u) corresponds to the number of individuals who both 
respond and die, which will be denoted by Rd. We shall also define p(u) = Y I(Xi > u, Ri = 1)/Y(u), 
which is the proportion of individuals who respond among those at risk at time u. Therefore, if we 
denote by t,, .. . , tk the distinct death times, then (A.6) is equal to 

k 

N-' {Rd- Z p(ti)j. 
j=1 

Consequently, an estimate for cov(T,, T2) under the assumption of equal censoring would be 
N k 

N- Z (Z, - Z)2lRd- Z p(tj)}- 
i=, j=1 

Noting that Z (Z, - Z)2 = nn2/N, we can write the estimate for the correlation coefficient as 

IRd - Zj= I3(tj) 

N[NV2p(1 - p)/nn2] 1/2 
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